If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2-50t+1750
We move all terms to the left:
0-(-16t^2-50t+1750)=0
We add all the numbers together, and all the variables
-(-16t^2-50t+1750)=0
We get rid of parentheses
16t^2+50t-1750=0
a = 16; b = 50; c = -1750;
Δ = b2-4ac
Δ = 502-4·16·(-1750)
Δ = 114500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{114500}=\sqrt{100*1145}=\sqrt{100}*\sqrt{1145}=10\sqrt{1145}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{1145}}{2*16}=\frac{-50-10\sqrt{1145}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{1145}}{2*16}=\frac{-50+10\sqrt{1145}}{32} $
| -3+2v=-15 | | 81(9)=x | | 5(k-3)-8=6k-(5k-3) | | 18n+6n+25=45 | | 0,1x=-10 | | 12x–3=7 | | 2d-11=15 | | 5x+6x=4(x+3) | | p-63/9=3 | | x=-1/6+2/3 | | (x+5)+(4x-7)=0 | | 1,2x=-6 | | p−639= 3 | | 25x+12x=410 | | -3x+-5=10 | | 25x+12x=450 | | 25x+12x=2000 | | 25x+12x(3x5x)=2000 | | 50-3c=8 | | 8×a#+9=73 | | 5x²+15x+10=0 | | j-2/3=3 | | 2n-18+6n=10 | | 0=-16t^2+50t+120 | | 15x+12x=360 | | 3(5z-7)+2(9z-11)=4(8z-7)+11 | | 15x+12x=220 | | 16y=+19 | | x-12=33-x | | 6h-7=(-19) | | -3(x+2)=x+22 | | 15x+12x=134 |